Historical NYSE:KO Data
Suppose we consider NYSE:SPY as the market indicator/index in calculating beta. Historical stock data of NYSE:SPY can be downloaded from Google Finance:
Historical NYSE:SPY Data
The following python script finds the beta value for market indicator and symbol historical data file names passed as command line parameters:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from sklearn import datasets, linear_model | |
import sys | |
fh = open(sys.argv[1], 'r') | |
lines = fh.readlines() | |
fh.close() | |
market_x = [] | |
for i in range(len(lines)-1): | |
if i==0: | |
continue | |
line_i = lines[i].strip().split(',')[4] | |
line_i_1 = lines[i+1].strip().split(',')[4] | |
rate = (float(line_i) - float(line_i_1))/(float(line_i_1)) | |
market_x.append([rate]) | |
fh = open(sys.argv[2], 'r') | |
lines = fh.readlines() | |
fh.close() | |
stock_y = [] | |
for i in range(len(lines)-1): | |
if i==0: | |
continue | |
line_i = lines[i].strip().split(',')[4] | |
line_i_1 = lines[i+1].strip().split(',')[4] | |
rate = (float(line_i) - float(line_i_1))/(float(line_i_1)) | |
stock_y.append([rate]) | |
regr = linear_model.LinearRegression() | |
regr.fit(market_x, stock_y) | |
print 'Beta: %s' % regr.coef_[0][0] |
No comments:
Post a Comment